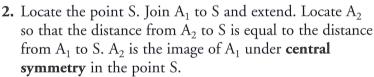

Example 3

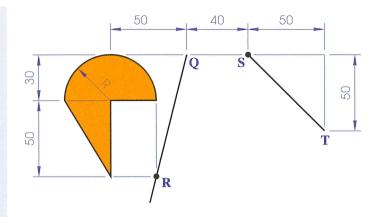
The figure shown is subjected to transformations in the following order:

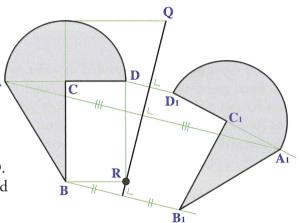

- (i) Axial symmetry in the line QR.
- (ii) Central symmetry in the point S.
- (iii) Translation equal to ST.
- (iv) **Rotation** clockwise about point R through an angle of 50°.

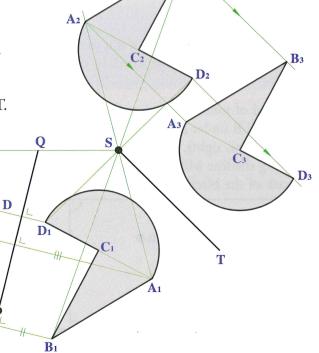
Draw the given figure and determine the image figures in each of the transformations.

Draw lines from each of the points A, B and D perpendicular to QR and extend as shown. Locate A_1 so that A_1 is the same distance from QR as A. A_1 is the image of A under **axial symmetry** in the line QR.

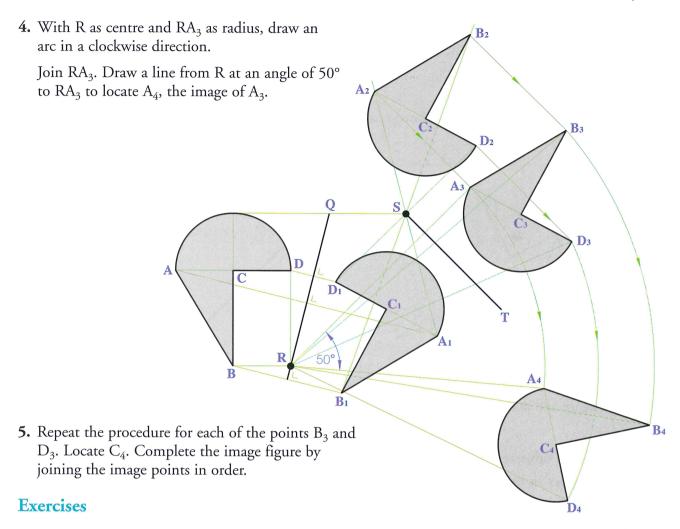
Repeat the procedure for each of the points B and D. Locate C_1 , the midpoint of A_1D_1 . Join the points and complete the image figure.

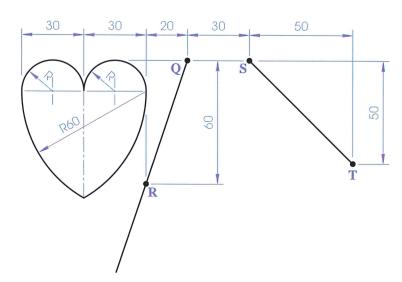


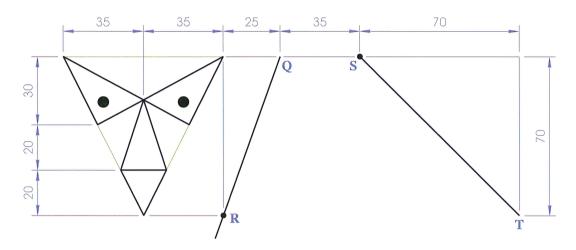

Repeat the procedure for each of the points B_1 and D_1 . Locate C_2 . Join the points in order and complete the image of the figure.


3. Locate the line ST. Draw lines parallel to ST through each of the points A₂, B₂ and D₂. Locate A₃ so that the distance from A₂ to A₃ is equal to the length of ST. A₃ is the image of A₂ under the **translation** ST.

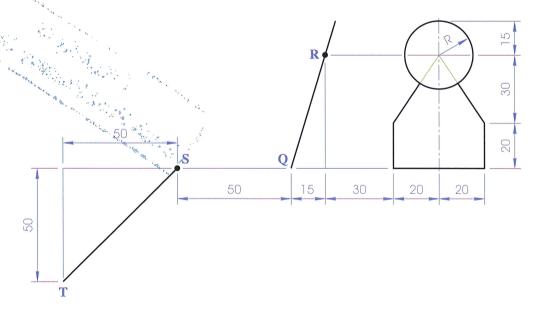
C


Repeat the procedure for each of the points B_2 and D_2 . Locate C_3 . Join the points and draw the image figure.

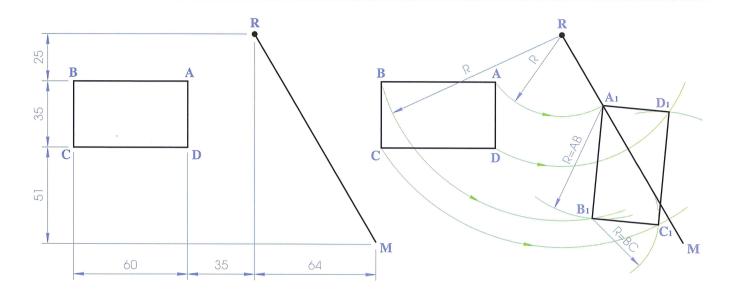



 \mathbf{B}_2

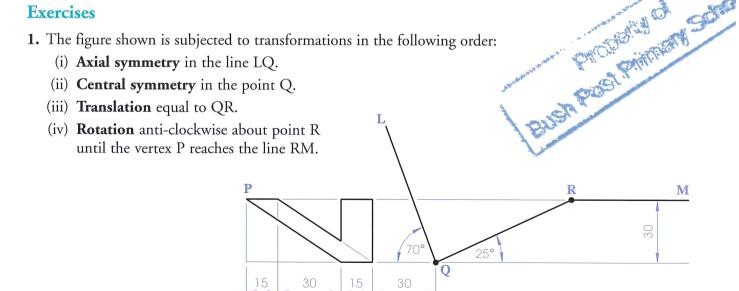
- 1. The figure shown is subjected to transformations in the following order:
 - (i) **Axial symmetry** in the line QR.
 - (ii) Central symmetry in the point S.
 - (iii) **Translation** equal to ST.
 - (iv) Rotation clockwise about point R through an angle of 45°.



- 2. The figure shown is subjected to transformations in the following order:
 - (i) Axial symmetry in the line QR.
 - (ii) Central symmetry in the point S.
 - (iii) Translation equal to ST.
 - (iv) Rotation clockwise about point R through an angle of 40°.


Draw the given figure and determine the image figures in each of the transformations.

- 3. The figure shown is subjected to transformations in the following order:
 - (i) Axial symmetry in the line QR.
 - (ii) **Central symmetry** in the point S.
 - (iii) Translation equal to ST.
 - (iv) Rotation clockwise about point S through an angle of 60°.

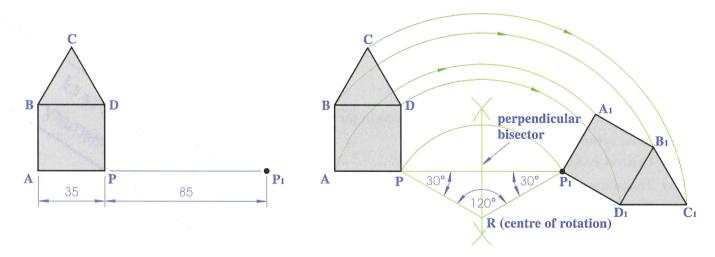


Example


The figure (below, left) shows a rectangle ABCD and a line RM. The rectangle ABCD is rotated anticlockwise about the point R until the vertex A reaches the line RM. Draw the given figure and determine the image figure under the transformation.

- 1. With R as centre and RA as radius, draw an arc in an anti-clockwise direction to locate A_1 on the line RM.
- **2.** With R as centre and RB as radius, draw an arc in an anti-clockwise direction. With A_1 as centre and AB as radius, draw an arc to locate B_1 on the arc drawn from B.
- 3. With R as centre and RC as radius, draw an arc in an anti-clockwise direction. With B_1 as centre and BC as radius, draw an arc to locate C_1 on the arc drawn from C.
- 4. Repeat the procedure for point D. Join the points in order to obtain the required image A₁B₁C₁D₁

- 2. The figure shown is subjected to transformations in the following order:
 - (i) **Translation** equal to QR.
 - (ii) Axial symmetry in the line LQ.
 - (iii) Central symmetry in the point R.
 - (iv) **Rotation** anti-clockwise about point R until the vertex A reaches the line RM.



Draw the given figure and determine the image figures in each of the transformations.

Example

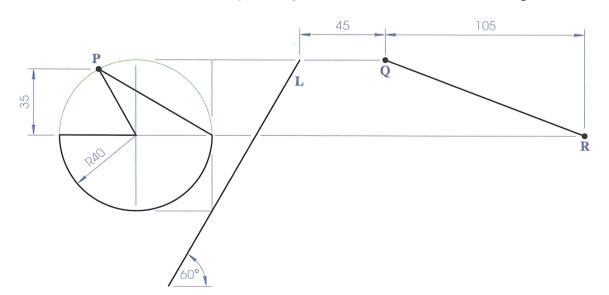
The figure PABCD (below, left) is based on a square and an equilateral triangle. It is subjected to a **rotation** clockwise through an angle of 120°. P_1 shows the position of the vertex P under this transformation.

Draw the given figure and determine the image figure under the rotation.



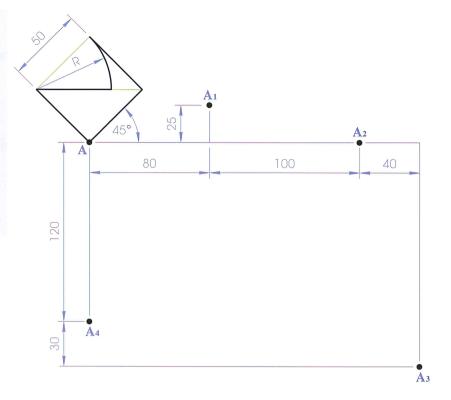
- 1. Join P to P_1 and construct the perpendicular bisector of this line. The **centre of rotation** lies on the perpendicular bisector as every point on the bisector is equidistant from P and P_1 .
- 2. The centre of rotation will lie on the lower side of the line PP₁ in order to allow for a clockwise rotation. If the centre of rotation were on the upper side of the line, this would allow for an anti-clockwise rotation. Draw lines at 30° to PP₁ to locate R, the centre of rotation. Complete the rotation as shown, and draw the image figure P₁A₁B₁C₁D₁.

 $\triangle PRP_1$ is isosceles. As $\angle PRP_1$ is 120°, then $\angle RPP_1 = \angle RP_1P = 30^\circ$ (180° – 120° = 60° ÷ 2 = 30°).


Exercises

- 1. The figure shown is subjected to transformations in the following order:
 - (i) **Axial symmetry** in the line L.
 - (ii) Translation equal to QR.
 - (iii) Central symmetry in the point Q.
 - (iv) Rotation anti-clockwise through an angle of 110° so that R will be the image of vertex P.

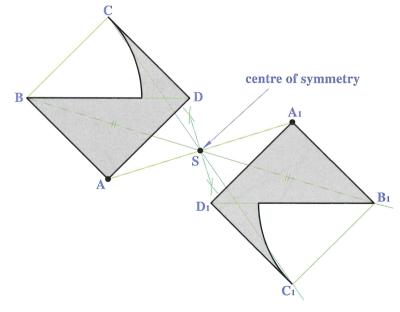
Draw the given figure and determine the image figures in each of the transformations.


- 2. The figure shown is subjected to transformations in the following order:
 - (i) Axial symmetry in the line L.
 - (ii) Translation equal to QR.
 - (iii) Central symmetry in the point R.
 - (iv) Rotation anti-clockwise through an angle of 100° so that Q will be the image of vertex P.

Example

The figure shown is subjected to transformations in the following order:

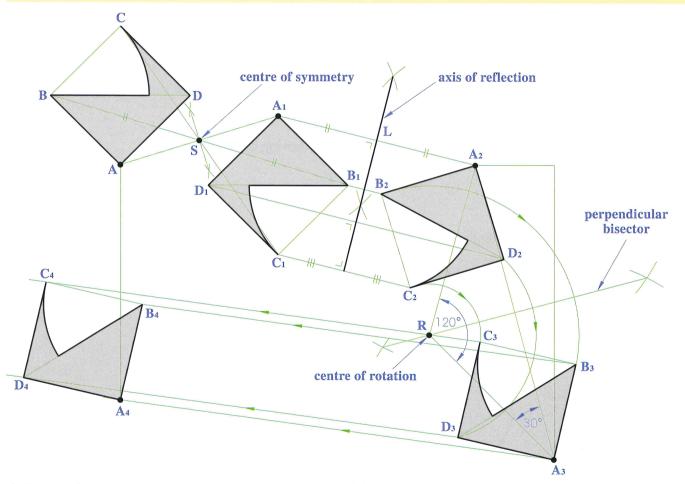
- (i) Central symmetry in a point.
- (ii) Axial symmetry.
- (iii) **Rotation** clockwise through 120°.
- (iv) Translation.


A1, A2, A3 and A4 show the positions of the vertex A under these transformations. Draw the given figure and determine the image figures in each of the transformations.

Draw the given figure and locate the point A₁. Index the points of the given figure as shown. Join A to A₁ and bisect this line at S. S is the centre of symmetry for the transformation.

Join B to S and extend. Locate B_1 so that the distance from B_1 to S is equal to the distance from B to S. B_1 is the image of B under **central symmetry** in the point S.

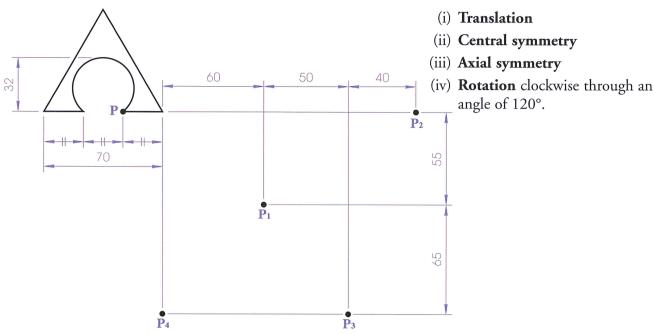
Repeat the procedure for each of the points C and D. Join the points in order and complete the image of the figure.


2. Locate the point A₂ (page 275, top). Join A₁ to A₂ and construct the perpendicular bisector L of this line. L is the axis of reflection for the transformation.

Draw lines from each of the points B_1 , C_1 , and D_1 perpendicular to L and extend as shown. Locate B_2 so that B_2 is the same distance from L as B_1 . B_2 is the image of B_1 under **axial symmetry** in the line L. Repeat the procedure for each of the points C_1 and D_1 . Join the points and draw the image figure.

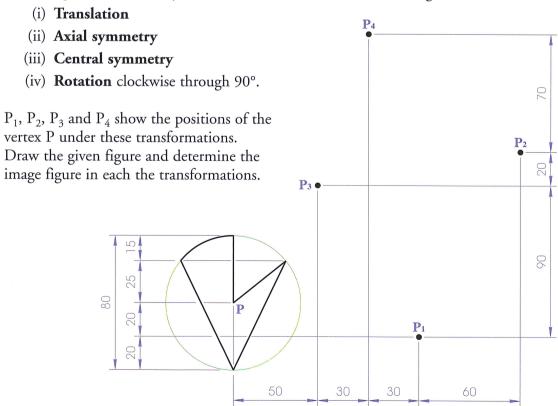
3. Locate the point A_3 (below). Join A_2 to A_3 and construct the centre of symmetry axis of reflection perpendicular of this line. The centre of rotation will lie on the left of the line A2A3 in order to allow for a clockwise rotation. If \mathbf{B}_1 the centre of rotation were on the D right side of the line, this would allow for an anti-clockwise rotation. Draw a line at 30° to A₂A₂ to locate R, the centre of rotation. Draw the image of the \mathbf{D}_2 figure under a **rotation** clockwise about the point R through an angle of 120°.

 $\triangle A_2 R A_3$ is isosceles. $\angle A_2 R A_3$ is 120°. Thus, $\angle R A_2 A_3 = \angle R A_3 A_2 = 30^\circ$ (180° – 120° = 60° ÷ 2 = 30°).



4. Locate the point A₄. Join A₃ to A₄. Draw lines parallel to A₃A₄ through each of the points B₃, C₃ and D₃. Locate B₄ so that the distance from B₃ to B₄ is equal to the length of A₃A₄. B₄ is the image of B₃ under the translation.

Repeat the procedure for each of the points C₃ and D₃. Join the points and draw the image figure.


Exercises

1. The figure shown is based on an **equilateral triangle**. It is subjected to transformations in the following order:

P₁, P₂, P₃ and P₄ show the positions of point P under these transformations. Draw the given figure and determine the image figures in each of the transformations.

The figure shown is subjected to transformations in the following order:

