Example 1

Draw a rectangle similar to the given rectangle ABCD but having sides twice the length of those in the given rectangle.

1. Using the vertex A as the centre of enlargement, draw radiating lines to pass through the vertices B, C and D (above, left).

Dı

- **2.** Locate the point B_1 so that the length of AB_1 is twice the length of AB.
- **3.** Draw a line through B_1 parallel to BC to locate the point C_1 (above, right).
- **4.** Draw a line through C_1 parallel to DC to locate D_1 . $AB_1C_1D_1$ is the required enlarged rectangle.

Example 2

Draw a polygon similar to the given polygon ABCDE (below, left) and having sides two-thirds of the length of those of ABCDE.

- 1. Using the vertex A as the centre of enlargement, draw radiating lines to pass through the vertices C and D (above, right).
- **2.** Divide AB in the ratio 2:1. Then AB_1 is two-thirds the length of AB.
- **3.** Draw a line through B_1 parallel to BC to locate the point C_1 .
- **4.** Similarly, draw lines through C₁ parallel to CD to locate D₁, and through D_1 parallel to DE to locate E_1 .
- **5.** $AB_1C_1D_1E_1$ is the required reduced polygon.

292 Understanding Technical Graphics

Example

Inscribe a square in the given triangle ABC (below, left).

- **1.** The solution involves using the principle of **relaxing one constraint** by drawing any square PQRS having two of its vertices on AB and another vertex on AC.
- 2. Join AR and extend to meet the side BC in R_1 . R_1 is the image of the vertex R under an **enlargement** with **centre of enlargement** A and **scale factor** AR_1/AR . R_1 is a point on the required square.
- 3. Complete the required square as shown.

Answer Worksheet 28C

Exercises

1. The figure below shows a **triangle**, a **quadrilateral**, a **regular pentagon** and a **regular hexagon**. Also shown is a **square** inscribed in each of the shapes.

Example

The figure (below, left) is based on a square and an equilateral triangle. Draw the given figure.

- 1. The principle of relaxing one constraint is used here. Draw any square ABCD and equilateral triangle CDE as shown. This shape is similar to the given figure.
- 2. Under an enlargement with centre of enlargement E, this shape may be mapped onto the required shape. Draw radiating lines from E passing through each of the vertices of the square ABCD.
- 3. Draw the line MN parallel to the side AB and a distance 125 mm from E, to cut the line EA at A₁, and the line EB at B₁. A₁B₁ is one side of the image figure.
- **4.** Draw a line from A_1 parallel to AD to cut the line ED at D_1 , thus obtaining another vertex D_1 . Locate C_1 in the same manner and draw the required figure.

Exercises

1. The figure shown (below, left) is based on a square and a regular pentagon. Draw this figure.

2. Draw the figure above, right. It is based on two interlocking regular pentagons.

294 Understanding Technical Graphics

3. Use an **enlargement** to construct the three **regular hexagons** as shown below given that the sides of successive hexagons are in the ratio 2:3.

Enlarging and Reducing using an External Centre of Enlargement

The centre of enlargement may be positioned in any convenient position as shown in the following example.

Example

Draw a figure similar to the table lamp (shown below, right) having an overall height of 110 mm.

- 1. Select a suitable position for the centre of enlargement O on the base extended. Draw a height line and project the heights of the original lamp onto this line. Index the points as shown.
- **2.** Draw a line parallel to the base and a distance of 110 mm from it. Draw a line from O to the point A to intersect this line at A_1 .
- **3.** Draw a vertical line from A_1 as shown. Draw lines from O to the points B, C, and D to locate B_1 , C_1 , and D_1 respectively. Draw horizontal lines through B_1 and C_1 .
- **4.** The reduced lamp can be completed because the corresponding sides of the original figure and the image figure are parallel.

Exercises

- 1. The figure across shows the **road sign** for a camp site. It contains two **equilateral triangles**.
 - (a) Draw the figure full-size.
 - **(b)** Draw a similar figure to the given figure having an overall height of 85 mm.

- **2.** The figure across shows a **road sign** for a forestry and picnic area.
 - (a) Draw the given figure to the given dimensions.
 - **(b)** Draw a similar figure to the given figure having an overall height of 170 mm.

- **3.** The figure over shows the outline of a **Celebrations** sweet box.
 - (a) Draw the figure to the given dimensions.
 - **(b)** Draw a similar figure to the given figure having an overall height of 130 mm.

296 Understanding Technical Graphics

- **4.** The figure over shows the outline of a **bottle** including a label based on a six-pointed star.
 - (a) Draw the figure to the given dimensions showing all constructions clearly.
 - **(b)** On a separate diagram draw a similar figure having an overall height of 140 mm.

- 5. The figure across shows the outline of a Fairy washing up liquid bottle.
 - (a) Draw the figure to the given dimensions showing all constructions clearly.
 - **(b)** On a separate diagram draw a similar figure having an overall height of 130 mm.

